
Session Speaker Robin-Yann Storm 
Session Title Tools Design Roundtable Day 1: Design & UX 
Track Design 
Duration/Format 60-Minute Roundtable
Presentation Outline In these roundtables we will discuss and share experiences on Tool 

Design & Production. This is a fairly new topic that, as we learned in 
previous roundtables, every studio has to deal with, but is talked about 
relatively little. To the point of the nomenclature still being discussed as 
well. These roundtables will give attendees the time and place to discuss 
how they handle feature requests, UX & UI improvements, and tool 
production in general for each of our own internal tool needs. 

For example, at the GDC 2023 roundtables, attendees brought up such 
topics as: What UI/UX implementation tools do you use, what are the 
pros and cons of one off tools vs reusable tools, how do you retain 
simplicity in complex tool environments, how much time is spent 
teaching tools vs building them, what kind of design is best for 
procedural tools, how and when do you upgrade tools, how to implement 
user research in a good way, and how to avoid the 'One more UI feature' 
that creeps into huge tools. 

This roundtable is separate from the tools tech roundtable, which is more 
programming focused. Attendees have noted that this split of roundtable 
topics works well. 

I will open up the roundtable by doing an introduction, and starting off 
with two small topics: What is the best thing that happened for you tool 
design wise in the last year, and what is the worst? After that warmup, I 
take questions from the attendees, which will be written on the paper 
board in the room. These questions will then be discussed one by one. I 
will also prepare a list of topics to be discussed in case we do not get 
enough questions to fill the full 60 minutes, but considering the amount 
of great discussion we had last year the chances of that needing to be 
necessary are slim. 

What is new this year is the addition of a third day. Each day will have a 
particular subtopic we will try to align to: 
Tool Design Roundtable Day 1: Design & UX 
Tool Design Roundtable Day 2: Production & Strategy 
Tool Design Roundtable Day 3: User Research 

Examples of topics that could be discussed for the Day 1 roundtable are: 
1. What user experience techniques have you seen best fit for your
toolsets?



2. Is classical UX applicable in tools, or is it very different? 
3. What differences, if any, have tool service companies seen with their 
tool designs? 
 
Examples of topics that can be discussed for day 2 are: 
1. What communication channels do you use to inform users about new 
tool features? E-mail? Meetings? Videos? Gifs? 
2. What is a ticketing request pipeline that works really well for you? 
3. In what size team did your tool request/ticket pipeline work best? 
 
Examples of topics that can be discussed for day 3 are: 
1. What user research methods do you use? 
2. Do you have a dedicated user researcher on your team? 
3. What surprises has your research uncovered in the last year? 

Description This Tool Design roundtable is about the UX of in-house and external 
toolsets. Come and meet, discuss, and find out what everyone has been 
doing with Tool Design in the last year. 
Examples of topics discussed in previous years are: 
1. What user experience techniques have you seen best fit for your 
toolsets? 
2. Is classical UX applicable in tools, or is it very different? 
3. What differences, if any, have tool service companies seen with their 
tool designs? 
This years' questions may be different, or similar! Feel free to join, and 
ask. 
 

Takeaway Attendees will share their experiences, challenges, and successes with 
tool design. They can expect to leave with a list of actionable 
methodologies, and real world experiences from other teams, that your 
team can adopt and learn from to improve in-house tool design. 

Intended Audience This roundtable is intended for tool designers, producers, tool 
programmers, and technical artists who wish to discuss and improve the 
design and efficiency of in-house tool design. 

 



Session Speaker Måns Isaksson 
Session Title Engineering Mayhem: Technical Deep-Dive into Environmental 

Destruction in 'THE FINALS' 
Track Programming 
Duration/Format 30-Minute Lecture
Presentation Outline The goal of this presentation is to give a detailed overview of the 

technical implementation behind the large feature which is 
"destruction" in THE FINALS, as well as the technical lessons we 
learned from working with such a complex system in a relatively 
small team. 

I will first introduce the audience to THE FINALS, explain the 
core concept of the game, and how it's destructive elements set 
it apart from other shooters in the same genre. Destruction is 
usually binary and subtractive and we will point out that in THE 
FINALS debris from destroyed buildings are fully simulated and 
stick around to create new gameplay spaces which creates 
many new design and technical challenges. We will keep this 
part brief and refer anyone who's interested in a more design-
oriented approach to a talk by Ludvig Kingfors, where he covers 
the design challenges of making a fully dynamic world. 

Once THE FINALS and it's destruction goals have been 
established, we will take a deeper look at some of the studio-
specific context that influenced the final technical design. Here 
we will cover the goals we had with destruction at Embark 
(persistent debris, everything should be destructible, spectacle, 
no "canned" animations) and how that ruled out some pre-made 
solutions such as Chaos in Unreal Engine. To expand on why 
Chaos did not work, the main drawbacks were (but not limited 
to) poor performance, inadequate collision detection, difficult to 
author the experience, and the general experimental nature of 
Chaos in Unreal. We will also touch on how we are a relatively 
small team at Embark trying to make a live-service game so 
managing in-house developer experience is critical for delivering 
a complex feature such as destruction where fast iteration is key 
to success. 

We will now move on to the core systems and concepts which 
collectively make up destruction. We will then walk through the 
arrived upon solution, any benefits and drawbacks of said 
solution, and finally any broader learnings that can be gained. 
We will also mention how having fully dynamic geometry poses 



challenges for other gameplay system that typically rely on the 
world being more or less static (such as audio, lighting, 
pathfinding, etc.). 

First we will will cover our workflow for pre-fracturing, importing, 
and processing fractured assets. The main beat of this section 
will be how we empower artists by moving the fracturing step 
into the hands of our talented Houdini artists. 

After this we will move on to the connectivity graph. This graph 
keeps track of the connections between destructible pieces for 
the whole level and is auto-built without the intervention of level 
designers. We will mainly cover serialization, replication, 
optimizations, and technical limitations. We will also cover what 
we call "Simple destructibles", a less complex destructible. 

Next we will focus a bit on our gameplay layer which 
Implements all relevant Unreal APIs such as sockets, 
attachments, rendering, physics, damage, and more. We will 
cover implementation of Unreal's gameplay API, rendering 
(using custom "composite mesh"), and management of physics 
shapes. 

Lastly we will have a look at strain. In this section we will cover 
our systemic approach to having building collapse. We will have 
a brief overview of what we call "the strain system" which 
implements an in-house constraint solver to solve for the load 
applied on each connection in the destruction graph which 
allows us to break connections whenever structural integrity is 
lost. 

Now that the audience have a good understanding of the 
technical implementation we will loop back to the stated design 
goals laid out at the start. We will examine what works well and 
what does not in context of these goals. An example of 
something that works well is automatic generation of the 
destruction graph. It allows level designers to work with 
modular, re-usable, kits, and to not really care too much about 
destruction details when setting up their block-out of the level 
("it just works"). Something that we might have done differently 
is to focus more on debugging tools, especially for strain. It is an 
opaque system that is difficult for designers and artists to work 
with which leads to them often having to take help from an 
engineer when tweaking the system. 



Description THE FINALS is a fast-paced, competitive FPS where emergent 
gameplay and a focus on dynamic systems enable players to 
come up with creative playstyles and change the play space to 
fit their needs. Front and center of these dynamic environments 
is the destruction system, which enables most parts of the 
environment the be destroyed, buildings to collapse, and debris 
from buildings to re-shape the play-space, all while being 
physically simulated. 

In this session Måns Isaksson (Game Programmer) will walk 
through the technical challenges the team at Embark had to 
overcome to bring this level of destruction to THE FINALS. He 
will delve into the benefits and challenges(!) of a completely 
systemic approach to destruction, walk you through our 
workflow – from constructing and fracturing structures to 
integrating them into the playable environment, and explore 
technical aspects such as replication, simulation performance, 
rendering, connection graph construction, and how we manage 
the physics state of our simulated debris. 

Takeaway Attendees will gain comprehensive understanding of how we 
went about solving the technical challenges presented while 
crafting a large and fully dynamic destruction system in THE 
FINALS. 

Intended Audience This presentation is primarily intended for mid- to senior level 
programmers. It covers several technical aspects of a larger 
system and as such many implementation details will be 
omitted, prior experience will be helpful to infer these details. 
However, effort will be made to to make it comprehensible and 
valuable to more novice programmers as well. 


